Polynomial series expansions for confluent and Gaussian hypergeometric functions
نویسندگان
چکیده
منابع مشابه
Polynomial series expansions for confluent and Gaussian hypergeometric functions
Based on the Hadamard product of power series, polynomial series expansions for confluent hypergeometric functions M(a, c; ·) and for Gaussian hypergeometric functions F (a, b; c; ·) are introduced and studied. It turns out that the partial sums provide an interesting alternative for the numerical evaluation of the functions M(a, c; ·) and F (a, b; c; ·), in particular, if the parameters are al...
متن کاملOn modified asymptotic series involving confluent hypergeometric functions
A modification of standard Poincaré asymptotic expansions for functions defined by means of Laplace transforms is analyzed. This modification is based on an alternative power series expansion of the integrand, and the convergence properties are seen to be superior to those of the original asymptotic series. The resulting modified asymptotic expansion involves confluent hypergeometric functions ...
متن کاملTheta Functions, Elliptic Hypergeometric Series, and Kawanaka’s Macdonald Polynomial Conjecture
We give a new theta-function identity, a special case of which is utilised to prove Kawanaka’s Macdonald polynomial conjecture. The theta-function identity further yields a transformation formula for multivariable elliptic hypergeometric series which appears to be new even in the one-variable, basic case.
متن کاملAsymptotic Representations of Confluent Hypergeometric Functions.
I A more general theory will result if in the place of R we employ an abstract normed ring. s We use the symbols =, ... ... in more than one sense. No confusion need arise as tie context makes clear the meaning of each such symbol. It is worth while to mention here that the relation of equality = for E1 as well as for E2 is not an independent primitive idea; for, an equivalent set of postulates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2005
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-05-01734-5